Diaphorase catalyzed biotransformation of RDX via N-denitration mechanism.

نویسندگان

  • Bharat Bhushan
  • Annamaria Halasz
  • Jim C Spain
  • Jalal Hawari
چکیده

Previously, we hypothesized that hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be biotransformed by anaerobic sludge via three different routes: (1) direct ring cleavage via alpha-hydroxylation of a-CH(2) group, (2) reduction of one of the -NO(2) groups to -NO, (3) N-denitration prior to ring cleavage. The present study describes biotransformation of RDX via route 3 by a diaphorase (EC 1.8.1.4) from Clostridium kluyveri using NADH as electron donor. The removal of RDX was accompanied by the formation and accumulation of nitrite ion (NO(2)(-)), formaldehyde (HCHO), ammonium (NH(4)(+)), and nitrous oxide (N(2)O). None of the RDX-nitroso products were detected. The ring cleavage product methylenedinitramine was detected as the transient intermediate. Product stoichiometry showed that each reacted RDX molecule produced one nitrite ion and the product distribution gave a carbon (C) and nitrogen (N) mass balance of 91 and 92%, respectively, supporting the occurrence of a mono-denitration step prior to the ring cleavage and decomposition. Severe oxygen mediated inhibition (92% inhibition) of RDX biotransformation and superoxide dismutase-sensitive cytochrome c reduction indicated the potential involvement of an anion radical RDX(.-) prior to denitration. A comparative study between native- and apo-enzymes showed the possible involvement of flavin mononucleotide (FMN) in catalyzing the transfer of a redox equivalent (e/H(+)) from NADH to RDX to produce RDX(.-) responsible for secondary decomposition.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by a rabbit liver cytochrome P450: insight into the mechanism of RDX biodegradation by Rhodococcus sp. strain DN22.

A unique metabolite with a molecular mass of 119 Da (C(2)H(5)N(3)O(3)) accumulated during biotransformation of hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) by Rhodococcus sp. strain DN22 (D. Fournier, A. Halasz, J. C. Spain, P. Fiurasek, and J. Hawari, Appl. Environ. Microbiol. 68:166-172, 2002). The structure of the molecule and the reactions that led to its synthesis were not known. In the p...

متن کامل

Biotransformation of hexahydro-1,3,5-trinitro-1,3,5-tiazine catalyzed by a NAD(P)H: nitrate oxidoreductase from Aspergillus niger.

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) can be efficiently mineralized with anaerobic domestic sludge, but the initial enzymatic processes involved in its transformation are unknown. To test the hypothesis that the initial reaction involves reduction of nitro group(s), we designed experiments to test the ability of a nitrate reductase (EC 1.6.6.2) to catalyze the initial reaction leading ...

متن کامل

Mechanism of xanthine oxidase catalyzed biotransformation of HMX under anaerobic conditions.

Enzyme catalyzed biotransformation of the energetic chemical octahydro-1,3,5,7-tetranitro-1,3,5,7-tetrazocine (HMX) is not known. The present study describes a xanthine oxidase (XO) catalyzed biotransformation of HMX to provide insight into the biodegradation pathway of this energetic chemical. The rates of biotransformation under aerobic and anaerobic conditions were 1.6+/-0.2 and 10.5+/-0.9 n...

متن کامل

Involvement of cytochrome c CymA in the anaerobic metabolism of RDX by Shewanella oneidensis MR-1.

Hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX) is a cyclic nitramine explosive commonly used for military applications that is responsible for severe soil and groundwater contamination. In this study, Shewanella oneidensis MR-1 was shown to efficiently degrade RDX anaerobically (3.5 µmol·h(-1)·(g protein)(-1)) via two initial routes: (1) sequential N-NO(2) reductions to the corresponding nitro...

متن کامل

Biotransformation of glyceryl trinitrate by rat hepatic microsomal glutathione S-transferase 1.

Although the biotransformation of organic nitrates by the cytosolic glutathione S-transferases (GSTs) is well known, the relative contribution of the microsomal GST (MGST1) to nitrate biotransformation has not been described. We therefore compared the denitration of glyceryl trinitrate (GTN) by purified rat liver MGST1 and cytosolic GSTs. Both MGST1 and cytosolic GSTs catalyzed the denitration ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:
  • Biochemical and biophysical research communications

دوره 296 4  شماره 

صفحات  -

تاریخ انتشار 2002